If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.5x^2=96
We move all terms to the left:
1.5x^2-(96)=0
a = 1.5; b = 0; c = -96;
Δ = b2-4ac
Δ = 02-4·1.5·(-96)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*1.5}=\frac{-24}{3} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*1.5}=\frac{24}{3} =8 $
| 3(x=7)=9 | | (8x-4)+(6x+18)=180 | | 3x-17+28=360 | | 3n=3n-18 | | 6x4x=10x+9 | | Y=-6x-33(0,) | | 6-4(x+2)=-x+4 | | (3x+16)=5x-54 | | 104=6y-2*4y+6 | | -6(y+5)=-48 | | 3x-4=(5x-38) | | 2(3u8)=70 | | 2x-3=(-4x-9 | | -22=8-5w | | 4x-1+x=2x+11 | | 25=32x | | -x+3x+1=-x+2+3x-1 | | 8y+21=11y | | 16x-15=30x+11x | | 6z+5=13 | | 5(d+2)=30 | | 7x+11+6x-7=180 | | 3x+(4x+19=180) | | 3x+(4x+19=180 | | t=62-46 | | 7x+6x+11-7=180 | | 3n^2-3n-34=2 | | 6a-10=2a-6 | | 19=50x | | 4x+8x=5 | | 8x+6=69+9 | | 75+x+5=180 |